
Figure 9.11 Structure of the diamond crystal. (a) The single carbon atom represented by the dark blue sphere is covalently
bonded to the four carbon atoms represented by the light blue spheres. (b) Gem-quality diamonds can be cleaved along smooth
planes, which gives a large number of angles that cause total internal reflection of incident light, and thus gives diamonds their
prized brilliance.

Covalently bonded crystals are not as uniform as ionic crystals but are reasonably hard, difficult to melt, and are insoluble
in water. For example, diamond has an extremely high melting temperature (4000 K) and is transparent to visible light. In
comparison, covalently bonded tin (also known as alpha-tin, which is nonmetallic) is relatively soft, melts at 600 K, and
reflects visible light. Two other important examples of covalently bonded crystals are silicon and germanium. Both of these
solids are used extensively in the manufacture of diodes, transistors, and integrated circuits. We will return to these materials
later in our discussion of semiconductors.

Metallic Bonding in Solids
As the name implies, metallic bonding is responsible for the formation of metallic crystals. The valence electrons are
essentially free of the atoms and are able to move relatively easily throughout the metallic crystal. Bonding is due to the
attractive forces between the positive ions and the conduction electrons. Metallic bonds are weaker than ionic or covalent
bonds, with dissociation energies in the range 1 − 3 eV .

9.4 | Free Electron Model of Metals

Learning Objectives

By the end of this section, you will be able to:

• Describe the classical free electron model of metals in terms of the concept electron number
density

• Explain the quantum free-electron model of metals in terms of Pauli’s exclusion principle

• Calculate the energy levels and energy-level spacing of a free electron in a metal

Metals, such as copper and aluminum, are held together by bonds that are very different from those of molecules. Rather
than sharing and exchanging electrons, a metal is essentially held together by a system of free electrons that wander
throughout the solid. The simplest model of a metal is the free electron model. This model views electrons as a gas. We first
consider the simple one-dimensional case in which electrons move freely along a line, such as through a very thin metal rod.
The potential function U(x) for this case is a one-dimensional infinite square well where the walls of the well correspond
to the edges of the rod. This model ignores the interactions between the electrons but respects the exclusion principle. For
the special case of T = 0 K, N electrons fill up the energy levels, from lowest to highest, two at a time (spin up and spin

down), until the highest energy level is filled. The highest energy filled is called the Fermi energy.
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The one-dimensional free electron model can be improved by considering the three-dimensional case: electrons moving
freely in a three-dimensional metal block. This system is modeled by a three-dimensional infinite square well. Determining
the allowed energy states requires us to solve the time-independent Schrödinger equation

(9.26)
− h2

2me

⎛

⎝
⎜ ∂2

∂ x2 + ∂2

∂ y2 + ∂2

∂z2

⎞

⎠
⎟ψ(x, y, z) = E ψ(x, y, z),

where we assume that the potential energy inside the box is zero and infinity otherwise. The allowed wave functions
describing the electron’s quantum states can be written as
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where nx, ny, and nz are positive integers representing quantum numbers corresponding to the motion in the x-, y-, and

z-directions, respectively, and Lx, Ly, and Lz are the dimensions of the box in those directions. Equation 9.27 is simply

the product of three one-dimensional wave functions. The allowed energies of an electron in a cube (L = Lx = Ly = Lz)

are
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Associated with each set of quantum numbers (nx, ny, nz) are two quantum states, spin up and spin down. In a real

material, the number of filled states is enormous. For example, in a cubic centimeter of metal, this number is on the order

of 1022. Counting how many particles are in which state is difficult work, which often requires the help of a powerful

computer. The effort is worthwhile, however, because this information is often an effective way to check the model.

Example 9.4

Energy of a Metal Cube

Consider a solid metal cube of edge length 2.0 cm. (a) What is the lowest energy level for an electron within the
metal? (b) What is the spacing between this level and the next energy level?

Strategy

An electron in a metal can be modeled as a wave. The lowest energy corresponds to the largest wavelength and
smallest quantum number: nx, ny, nz = (1, 1, 1). Equation 9.28 supplies this “ground state” energy value.

Since the energy of the electron increases with the quantum number, the next highest level involves the smallest
increase in the quantum numbers, or (nx, ny, nz) = (2, 1, 1), (1, 2, 1), or (1, 1, 2).

Solution

The lowest energy level corresponds to the quantum numbers nx = ny = nz = 1. From Equation 9.28, the

energy of this level is

E(1, 1, 1) = π2 h2

2me L2 (12 + 12 + 12)

= 3π2 (1.05 × 10 − 34 J · s)2

2 (9.11 × 10−31 kg) (2.00 × 10−2 m)2

= 4.48 × 10−34 J = 2.80 × 10−15 eV.

The next-higher energy level is reached by increasing any one of the three quantum numbers by 1. Hence, there
are actually three quantum states with the same energy. Suppose we increase nx by 1. Then the energy becomes
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9.4

E(2, 1, 1) = π2 h2

2me L2(22 + 12 + 12)

= 6π2 (1.05 × 10 − 34 J · s)2

2(9.11 × 10−31 kg)(2.00 × 10−2 m)2

= 8.96 × 10−34 J = 5.60 × 10−15 eV.

The energy spacing between the lowest energy state and the next-highest energy state is therefore

E(2, 1, 1) − E(1, 1, 1) = 2.80 × 10−15 eV.

Significance

This is a very small energy difference. Compare this value to the average kinetic energy of a particle, kB T ,

where kB is Boltzmann’s constant and T is the temperature. The product kB T is about 1000 times greater than

the energy spacing.

Check Your Understanding What happens to the ground state energy of an electron if the dimensions of
the solid increase?

Often, we are not interested in the total number of particles in all states, but rather the number of particles dN with energies
in a narrow energy interval. This value can be expressed by

dN = n(E)dE = g(E)dE · F

where n(E) is the electron number density, or the number of electrons per unit volume; g(E) is the density of states, or
the number of allowed quantum states per unit energy; dE is the size of the energy interval; and F is the Fermi factor.
The Fermi factor is the probability that the state will be filled. For example, if g(E)dE is 100 available states, but F is only
5% , then the number of particles in this narrow energy interval is only five. Finding g(E) requires solving Schrödinger’s

equation (in three dimensions) for the allowed energy levels. The calculation is involved even for a crude model, but the
result is simple:

(9.29)
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where V is the volume of the solid, me is the mass of the electron, and E is the energy of the state. Notice that the density

of states increases with the square root of the energy. More states are available at high energy than at low energy. This
expression does not provide information of the density of the electrons in physical space, but rather the density of energy
levels in “energy space.” For example, in our study of the atomic structure, we learned that the energy levels of a hydrogen
atom are much more widely spaced for small energy values (near than ground state) than for larger values.

This equation tells us how many electron states are available in a three-dimensional metallic solid. However, it does not
tell us how likely these states will be filled. Thus, we need to determine the Fermi factor, F. Consider the simple case of

T = 0 K . From classical physics, we expect that all the electrons ( ∼ 1022 / cm3) would simply go into the ground state

to achieve the lowest possible energy. However, this violates Pauli’s exclusion principle, which states that no two electrons
can be in the same quantum state. Hence, when we begin filling the states with electrons, the states with lowest energy
become occupied first, then states with progressively higher energies. The last electron we put in has the highest energy.
This energy is the Fermi energy EF of the free electron gas. A state with energy E < EF is occupied by a single electron,

and a state with energy E > EF is unoccupied. To describe this in terms of a probability F(E) that a state of energy E is

occupied, we write for T = 0 K :

(9.30)F(E) = 1 (E < EF)
F(E) = 0 (E > EF).
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The density of states, Fermi factor, and electron number density are plotted against energy in Figure 9.12.

Figure 9.12 (a) Density of states for a free electron gas; (b) probability that a state is occupied at T = 0 K ; (c) density of

occupied states at T = 0 K .

A few notes are in order. First, the electron number density (last row) distribution drops off sharply at the Fermi energy.
According to the theory, this energy is given by

(9.31)
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8me
⎛
⎝
3N
πV

⎞
⎠
2/3

.

Fermi energies for selected materials are listed in the following table.

Element Conduction Band Electron Density
⎛
⎝1028 m−3⎞

⎠

Free-Electron Model Fermi Energy
(eV)

Al 18.1 11.7

Ba 3.15 3.64

Cu 8.47 7.00

Au 5.90 5.53

Fe 17.0 11.1

Ag 5.86 5.49

Table 9.3 Conduction Electron Densities and Fermi Energies for Some Metals

Note also that only the graph in part (c) of the figure, which answers the question, “How many particles are found in the
energy range?” is checked by experiment. The Fermi temperature or effective “temperature” of an electron at the Fermi
energy is

(9.32)TF = EF
kB

.

Example 9.5

Fermi Energy of Silver

Metallic silver is an excellent conductor. It has 5.86 × 1028 conduction electrons per cubic meter. (a) Calculate

its Fermi energy. (b) Compare this energy to the thermal energy kB T of the electrons at a room temperature of

300 K.

422 Chapter 9 | Condensed Matter Physics

This OpenStax book is available for free at http://cnx.org/content/col12067/1.9



Solution
a. From Equation 9.31, the Fermi energy is

EF = h2

2me
(3π2 ne)2/3

= (1.05 × 10−34 J · s)2

2(9.11 × 10−31 kg)
× [(3π2 (5.86 × 1028 m−3)]2/3

= 8.79 × 10−19 J = 5.49 eV.

This is a typical value of the Fermi energy for metals, as can be seen from Table 9.3.

b. We can associate a Fermi temperature TF with the Fermi energy by writing kB TF = EF. We then find

for the Fermi temperature

TF = 8.79 × 10−19 J
1.38 × 10−23 J/K

= 6.37 × 104 K,

which is much higher than room temperature and also the typical melting point ( ∼ 103 K) of a metal.

The ratio of the Fermi energy of silver to the room-temperature thermal energy is

EF
kB T = TF

T ≈ 210.

To visualize how the quantum states are filled, we might imagine pouring water slowly into a glass, such as that of Figure
9.13. The first drops of water (the electrons) occupy the bottom of the glass (the states with lowest energy). As the level
rises, states of higher and higher energy are occupied. Furthermore, since the glass has a wide opening and a narrow stem,
more water occupies the top of the glass than the bottom. This reflects the fact that the density of states g(E) is proportional

to E1/2 , so there is a relatively large number of higher energy electrons in a free electron gas. Finally, the level to which

the glass is filled corresponds to the Fermi energy.

Figure 9.13 An analogy of how electrons fill energy states in a
metal. As electrons fill energy states, lowest to highest, the
number of available states increases. The highest energy state
(corresponding to the water line) is the Fermi energy. (credit:
modification of work by “Didriks”/Flickr)

Suppose that at T = 0 K , the number of conduction electrons per unit volume in our sample is ne . Since each field state

Chapter 9 | Condensed Matter Physics 423



has one electron, the number of filled states per unit volume is the same as the number of electrons per unit volume.

9.5 | Band Theory of Solids

Learning Objectives

By the end of this section, you will be able to:

• Describe two main approaches to determining the energy levels of an electron in a crystal

• Explain the presence of energy bands and gaps in the energy structure of a crystal

• Explain why some materials are good conductors and others are good insulators

• Differentiate between an insulator and a semiconductor

The free electron model explains many important properties of conductors but is weak in at least two areas. First, it assumes
a constant potential energy within the solid. (Recall that a constant potential energy is associated with no forces.) Figure
9.14 compares the assumption of a constant potential energy (dotted line) with the periodic Coulomb potential, which drops
as −1/r at each lattice point, where r is the distance from the ion core (solid line). Second, the free electron model assumes

an impenetrable barrier at the surface. This assumption is not valid, because under certain conditions, electrons can escape
the surface—such as in the photoelectric effect. In addition to these assumptions, the free electron model does not explain
the dramatic differences in electronic properties of conductors, semiconductors, and insulators. Therefore, a more complete
model is needed.

Figure 9.14 The periodic potential used to model electrons in a
conductor. Each ion in the solid is the source of a Coulomb potential.
Notice that the free electron model is productive because the average
of this field is approximately constant.

We can produce an improved model by solving Schrödinger’s equation for the periodic potential shown in Figure 9.14.
However, the solution requires technical mathematics far beyond our scope. We again seek a qualitative argument based on
quantum mechanics to find a way forward.

We first review the argument used to explain the energy structure of a covalent bond. Consider two identical hydrogen
atoms so far apart that there is no interaction whatsoever between them. Further suppose that the electron in each atom is
in the same ground state: a 1s electron with an energy of −13.6 eV (ignore spin). When the hydrogen atoms are brought

closer together, the individual wave functions of the electrons overlap and, by the exclusion principle, can no longer be in
the same quantum state, which splits the original equivalent energy levels into two different energy levels. The energies of
these levels depend on the interatomic distance, α (Figure 9.15).
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